

### Designed for accuracy in all applications:



# combimeter® //

### Heat and Volume Meters

#### **Functional description**

The new **combimeter** "*II* is a heat meter which, with its advanced electronic metering technology, is designed for the accurate metering of even the largest of heat loads.

Its flow metering unit is based on the electromagnetic measuring principle, which works without moving parts, and is therefore particularly reliable and durable.

The electronic processor unit controls the entire meter, from the power supply through the metering circuits and calculations down to the information displays.

The *combimeter* "*II* provides the basis for a wide range of consumption analyses.

#### **Performance features**

All functions of the *combimeter* \**II* are controlled electronically. The meter can be individually programmed using Windows-based software programs with an easy-to-operate user interface. It can therefore be tailored to suit the needs of the specific user or application.

An M-bus interface is integrated as a standard feature.

The flow metering unit is available in 11 different sizes for flow ranges between  $0.015 \text{ m}^3/\text{h}$  and  $180 \text{ m}^3/\text{h}$ .

#### Interfaces

In addition to an integrated display, data can be read out in the following ways: (optional modules)

- via an optical interface to the ZVEI standard or
- via the integrated M-bus interface to the EN 1434 standard.

#### Application

The *combimeter "II* is a heat meter tailor-made to suit the special needs of district and communal heating.

#### Benefits

- High accuracy over a long period thanks to the combination of the magnetically inductive measuring principles and advanced electronics
- Wide field of applications thanks to the large number of hardware and software modules available
- Very wide metering range and low pressure drop
- High data security even in the event of a power failure
- Data tailored to the customer's needs thanks to individual programming options
- User-friendly installation and operation
- System analyses through max./min. memory
- Individual billing using tariff configurable counters.

The **combimeter**<sup>•</sup>II is the static heat meter, specially designed for district heating.



### combimeter ® //

# High performance from all components

#### Intelligent processor unit

The processor unit contains high-tech circuits for coil excitation in the flow metering unit, for measuring flow rates and temperature, for integration, calculation, logging and data display.

The *combimeter II* processor unit has been specially designed for ease of use. The new and attractive design with its low overall height ensures easy installation of the meter. The meter can be conveniently read from a back lit two-line LCD. Two buttons permit user-friendly control of the various display loops. All measurement inputs can be either screw terminal or plug-in connections.

The processor unit is connected to the power supply. Reliable meter reading is ensured even if the voltage drops, as all information is stored in a non-volatile memory (EPROM), preventing any loss of data.

#### Accurate flow metering unit

The flow metering unit is based on the magnetic induction measuring principle. Its measuring cross section is rectangular, with electrodes over the entire height. This gives it a large metering range and makes it independent of the flow profile.

The unit is designed so that it corresponds to the maximum flow rate of the system and is available for installation either in the flow or return lines. The unit can be installed without straight lengths of pipe at the inlet or outlet and high metering accuracy is ensured.

The flow metering unit satisfies the requirements of EN 1434 and its measuring characteristics are even better than those of the previous model.

A long-life battery ensures operation of the real-time clock in the event of a power failure and, at the same time, records how long power is off.





### combimeter® //

#### **Temperature sensors**

*combineter "ll* temperature sensors are supplied with protection pockets and cables for connection to the processor unit.

The *combimeter* <sup>®</sup> // consists of

- the flow metering unit
- the processor unit
- the temperature sensors



## A wide range of meter sizes

The *combineter*  $^{\circ}II$  is available in 11 different sizes, i.e. with 11 different flow metering units covering flow ranges from 0.015 m<sup>3</sup>/h to 180 m<sup>3</sup>/h.

The flow metering units are sized as illustrated, Qs representing the maximum admissible continuous flow. All meters can record Qp + 50%.





### combimeter ® //

### Accessories for tailored solutions

#### **Expansion modules**

*combimeter "II* has two plug-in locations for expansion modules to connect external equipment.

#### Analog module

The analog module has two electrically isolated 4-20 mA outputs as a standard feature. These two outputs can be programmed separately, for example, for flow rate, heat load, flow temperature, return temperature or temperature difference.

#### **Digital I/O module**

The digital I/O module has two contact inputs with a common earth connection as well as two electrically isolated passive outputs.

#### RS-232 module

The communication module RS-232 is a serial interface for communications with external equipment, e.g. a PC.

#### M-bus interface

The M-bus interface is integrated as standard.



#### Software

#### combitest <sup>®</sup> II

The *combitest* <sup>®</sup> *II* software is an M-bus-based tool for reading out the meter configuration. It runs under Windows 95 and is used for

- reading out the meter data (apart from the data log)
- archiving and printing out
- implementing customer-specified changes

| _ CombiTeet   |        |                                        |                                                                                                                |
|---------------|--------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|
| He Destroyed  | - 314  | ************************************** | 121222                                                                                                         |
| Factory Setup | -      | Actual Values, promption of            | a lot a state of the                                                                                           |
| Tables 1      | 18.8   | Tergenature 1 11 (11 )4 (1)            | Seul@ite BEZINE                                                                                                |
| San I         |        | Temperature 2 1010 10                  | the Dite: 1726276                                                                                              |
| Value Pala    | 18.8   | Teres 2.00. 12-07 8.                   | Million Address 1                                                                                              |
| Calibration.  | 22984  | Powei +172 ktv                         | Samerins 18                                                                                                    |
| Water Deck    | 2364   | Har 4212 mith.                         | Dan Line                                                                                                       |
| Herithet [    | . 4    | Courte Values                          | Date (07.00.1000                                                                                               |
| Parish built  | 199    | Disegramety 440000 kin/s               | Name 1723                                                                                                      |
| Index [       | 10     | Long rept- 30000 Kbh                   | E type, Taxe with PC                                                                                           |
| Reng Ltd.     | 111    | Videow pratie 4101.30 mil              | P Sametre                                                                                                      |
| tea .         | . 49   | Tokene regard 012 ml                   | E Partern                                                                                                      |
| freg Deck     | 888.75 | Hoaffan 200.57 k                       |                                                                                                                |
| Think (T)     | 1      | Element 1421248                        | Fulfieral                                                                                                      |
|               |        | Puter I                                | Naturie                                                                                                        |
|               |        | Pute2                                  | Constant of                                                                                                    |
| Peak          |        |                                        | a la francessa de la compañía de la |

### combiset <sup>®</sup> II

*combiset* <sup>®</sup> *II* is the central service software tool for the user. It is a menudriven, easy-to-use Windows 95 programme for setting a customised application, e.g. configuration of heat and volume meters, tariff setting and user displays.

#### combilog <sup>®</sup> II

*combilog* <sup>®</sup> *II* reads out the data logs of the heat meter, archives them, presents the meter readings and prints diagrams and tables. *combilog* <sup>®</sup>, II is also based on M-bus and runs under Windows 95.





### combimeter® //

# Data logging functions

Two logging modules are active in the *combimeter "I*:

- Data log for consumption values
- Change log for faults and operator changes

The values from both logs can be read using a PC.

#### The data log

is divided into two sections:

- The short-time log contains average values for the following:
- Flow rate
- Heat output\*
- Flow temperature\*
- Return temperature\*
- All these values are time-stamped.

- The long-run log contains the following counter values:
- Energy consumption\*
- Volume of water
- Hours run
- Forward energy\*
- Tariff counters (energy\* and volume)

These values are time-stamped with the date, year and weekday.

\* only applies to the heat meter.

The short-run log is normally used for troubleshooting and optimisation. The long-run log is normally used for consumption analyses; the values can be used for calculations, e.g. average return temperature.

#### The change log

The last 30 faults or changes (e.g. clock adjustments) are continuously recorded and time-stamped. Thus following types of failure can be identified:

- Power failure
- Temperature sensors
- Internal communications
- Check sum
- Clock adjustment

| Logging frequency           | Data recorded               | Logging period |
|-----------------------------|-----------------------------|----------------|
| Every 6 minutes             | Flow rate (ø)               | 2 days         |
|                             | Heat output (ø)             |                |
| Every hour                  | Flow temperature (ø)        | 14 days        |
|                             | Return temperature (ø)      |                |
| Every 24 hours              | Volume counter              | 1 year         |
| 1st and 15th of every month | Hours run                   | 7 years        |
|                             | Tariff counter              |                |
|                             | Forward energy (ø)          |                |
|                             | (flow temperature x volume) |                |

This table shows the logging frequencies and the logging periods.

### combimeter <sup>®</sup> //

### User-friendly control of the display

The display of the *combimeter* \*// has three user loops and a service loop.

Each user loop may contain up to 24 individual windows.

### Standard settings of the loops



The first loop is the main loop and contains the current data for flow, energy and time/date as a standard feature. The second and third loops can be used as desired for all other functions, e.g. min. max. tariffs etc. All three user loops can be individually programmed with the *combiset* <sup>(®)</sup> *II* software.

Information on certain functions is spread over two windows. In this case the display automatically alternates every four seconds between these two windows.

Furthermore, there are windows that are "behind each other". This is the case when windows have the same function but display different values, e.g. 13 max. or min. storage intervals. These windows can then be activated consecutively with the control buttons. 6 minutes after operation of the buttons the meter automatically returns to the main window.

The fourth loop is a "service loop". This loop contains windows that are available to the service technician for information or configuration purposes. The windows in this loop cannot be changed.

#### Simple control

The displays are accessed with two control buttons on the front panel of the meter, one with an arrow pointing to the right, the other with an arrow pointing downwards. The button with the arrow pointing downwards is used:



- to change to the next window in the active loop.
- to change to the next loop
- to change to the service loop.

The button with the arrow pointing to the right is used:



- to change to the windows behind each other
- to configure within the service loop
- to change to the next loop
- to change to the service loop.

# combimeter<sup>®</sup> // Information displays

The display permits the indication of a wide variety of informative data:

| No. | First display                                                                                                    | Second display                                  | Description                                                                                          |
|-----|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 1   | XX 1234.567 MWh<br>40.0° 123,4 kW                                                                                |                                                 | Main ENERGY counter<br>Current temperature difference and output                                     |
| 2   | XX 1234.567 MWh                                                                                                  |                                                 | Hour counter (2 decimal places)                                                                      |
| 3   | $\begin{array}{rcl} 11 &=& 80 & 12 &=& 40 \\ \text{XX 1234.567 m}^3 \\ & 1.23 & \text{m}^3/\text{h} \end{array}$ |                                                 | Current temperatures 1 and 2<br>Main VOLUME counter<br>Current flow rate                             |
| 4   | XX 1.23 m <sup>3</sup> /h                                                                                        |                                                 | Current flow rate                                                                                    |
|     | 40.0° 123,4 kW                                                                                                   |                                                 | Current temperature difference and output                                                            |
| 5   | XX 12345 h<br>$t1 = 80^{\circ} t2 = 40^{\circ}$                                                                  |                                                 | Hour counter (no decimal places)                                                                     |
| 6   | XX 1234.567 MWh<br>1.2345.67 m <sup>3</sup>                                                                      |                                                 | Current temperatures 1 and 2<br>Main ENERGY counter<br>Main VOLUME counter                           |
| 7   | XX ># # 0.00 kW                                                                                                  | $XX > # # t1 = 80^{\circ}$                      | MAX. output [## = index 1-13] + temp. 1 & 2                                                          |
|     | YYMMDD hhmm/hhmm                                                                                                 | $t2 = 40^{\circ}$                               | Date and time interval                                                                               |
| 8   | $\begin{array}{rcl} XX & II &=& 1234567 \\ I2 &=& 1234567 \end{array}$                                           |                                                 | Pulse counter 1<br>Pulse counter 2                                                                   |
| 10  | XX > ## 0.97 m <sup>3</sup> /h<br>YYMMDD hhmm/hhmm                                                               | XX > # # $t1 = 80^{\circ}$<br>$t2 = 40^{\circ}$ | MAX. flow rate $[## = index 1-13] + temp. 1 \& 2$<br>Date and time interval                          |
| 13  | XX < ## 0.00 m³/h<br>YYMMDD hhmm/hhmm                                                                            | XX <# # t1 = 80°<br>t2 = 40°                    | MIN. flow rate [## = index 1-13] + temp. 1 & 2<br>Date and time interval                             |
| 16  | XX YYDDMM<br>1234.567 MWh                                                                                        | XX YYDDMM<br>1234 567 MWb                       | Main ENERGY and VOLUME readings                                                                      |
| 18  | XX 27.808 MWh<br>YYMMDD / YYMMDD                                                                                 | XX 681.94 $m^3$<br>f = 79,3° t = 33,5°          | Total consumption of previous year with average flow temperature and temperature difference          |
| 19  | XX 17.756 MWh<br>YYMMDD / YYMMDD                                                                                 | XX 402.84 $m^3$<br>f = 81,5° t = 34,1°          | Consumption of previous year up to set day with ave-<br>rage forward flow and temperature difference |
| 20  | XX 15.284 MWh<br>YYMMDD / YYMMDD                                                                                 | XX 389.04 $m^3$<br>f = 84,3° t = 34,1°          | Consumption of this year up to set day with average forward flow and temperature difference          |
| 21  | XX T# hhmm/hhmm<br>ww 1234.567 MWh                                                                               | XX T# hhmm/hhmm<br>ww 1234.567MWh               | Tariff counter # [1-13]<br>(example work week type]                                                  |
| 22  | XX RD: YYMMDD<br>52346 m <sup>3</sup>                                                                            | XX RD: YYMMDD<br>23511 kWh                      | Volume and energy readings on the M-bus set day (reading date)                                       |
| 24  | XX 1234567 E                                                                                                     |                                                 | Forward energy counter (flow temperature)<br>counts: (volume pulses)* Tf/100                         |
| 30  | XX [S] hh:mm<br>YYYY-MM-DD W                                                                                     |                                                 | Current time: summertime, time of day<br>Year, month, date and weekday (Monday = 1)                  |
|     |                                                                                                                  |                                                 |                                                                                                      |

The default settings display the following windows:

- in loop 1
  - windows 2,4,6,30
- in loop 2
- windows 16,18,19,20 • in loop 3 windows 7,10,13

However, the first three loops can be individually programmed as required with the software module combiset® II.

### combimeter<sup>®</sup> //

### Information display (volume meter)

| No. | First display                                        | Description                                                                          |
|-----|------------------------------------------------------|--------------------------------------------------------------------------------------|
| 3   | XX 1234.567 m <sup>3</sup><br>1.23 m <sup>3</sup> /h | Main VOLUME counter<br>Current flow rate                                             |
| 10  | XX > ## 0.97 m <sup>3</sup> /h<br>YYMMDD hhmm/hhmm   | MAX. flow rate $[# # = index 1-13]$<br>Date and time interval                        |
| 13  | XX < ## 0.00 m³/h<br>YYMMDD hhmm/hhmm                | MIN. flow rate [# # = index 1-13]<br>Date and time interval                          |
| 30  | XX [S] hh:mm<br>YY-MM-DD W                           | Current time: summer time, time of day<br>Year, month, date and weekday (Monday = 1) |
| 46  | XX YYMMDD<br>1.2345.67 m <sup>3</sup>                | Main VOLUME reading<br>last 1st and 15th of last month                               |
| 51  | XX T# hhmm/hhmm<br>ww 1.2345.67 m <sup>3</sup>       | Tariff counter # [1-13]<br>(example work week type)                                  |
| 100 | XX 1234.567 m <sup>3</sup><br>1234.567 h             | Volume counter<br>Hour counter (2 decimal places)                                    |
| 102 | XX 1234.567 m <sup>3</sup><br>12345 h                | Volume counter<br>Hour counter (no decimal places)                                   |
| 103 | XX 12345.67 h                                        | Hour counter (2 decimal places)                                                      |
| 104 | XX 1.23 m³/h                                         | Current flow rate                                                                    |
| 105 | XX 12345 h                                           | Hour counter (no decimal places)                                                     |
| 114 | XX 1234.567 m <sup>3</sup><br>YYMMDD / YYMMDD        | Volume consumption, last year                                                        |
| 115 | XX 1234.567 m <sup>3</sup><br>YYMMDD / YYMMDD        | Volume consumption, last year up to today                                            |
| 116 | XX 1234.567 m <sup>3</sup><br>YYMMDD / YYMMDD        | Volume consumption, this year up to today                                            |

### Mesuring accuracy

Energy accuracy range in accordance with EN 1434, class 2



# *combimeter*<sup>®</sup> // Pressure drop curves

Typical pressure drop curves for combimeter °// type 1.5 - type 120



### Dimensions

Processor unit



Sensor with protection pockets



Cable attached sensor



Flow metering unit



### combimeter<sup>®</sup> //

## Dimensions

Flow metering unit Type 2.5 (screwed connections)



Flow metering unit Type 10 - 120



|    |         |         |     |     | 80 / | 120 |  |  |  |
|----|---------|---------|-----|-----|------|-----|--|--|--|
| FI | ow unit | 40 / 60 |     |     |      |     |  |  |  |
|    | Туре    |         |     |     |      |     |  |  |  |
|    |         | 1       | 0   |     |      |     |  |  |  |
| DN | mm      | 40      | 50  | 65  | 80   | 100 |  |  |  |
| А  | mm      | 300     | 270 | 300 | 300  | 360 |  |  |  |
| D  | mm      | 150     | 165 | 185 | 200  | 235 |  |  |  |
| k  | mm      | 110     | 125 | 145 | 160  | 190 |  |  |  |
| b  | mm      | 20      | 22  | 24  | 26   | 28  |  |  |  |
| d  | mm      | 18      | 18  | 18  | 18   | 23  |  |  |  |
| d  | Number  | 4       | 4   | 8   | 8    | 8   |  |  |  |

## combimeter <sup>®</sup> //

# Technical specifications

| Processor unit                       |                                               |                   | 1.5   | 2.5                                           | 3.5  | 6       | 10        | 15       | 25     | 40  | 60  | 80   | 120  | Unit |
|--------------------------------------|-----------------------------------------------|-------------------|-------|-----------------------------------------------|------|---------|-----------|----------|--------|-----|-----|------|------|------|
|                                      | Total energy                                  |                   |       |                                               | 9    | 999 990 | 9 - 999 9 | 99.9 - 9 | 999.99 | 9   |     |      |      |      |
| Display<br>Readings                  | Energy unit                                   |                   |       | kWh - MWh - GJ - Gcal - MBTU                  |      |         |           |          |        |     |     |      |      |      |
|                                      | Total volume                                  |                   |       | 9 999 999 - 999 999,9 - 99 999,99 - 9 999,999 |      |         |           |          |        |     |     |      |      |      |
| 0                                    | Current values                                |                   |       | Output - Flow rate - Temperature              |      |         |           |          |        |     |     |      |      |      |
|                                      | Temperature<br>sensor                         | Туре              |       | Pt100 / 4-wire or 2-wire                      |      |         |           |          |        |     |     |      |      |      |
| Temperature<br>input                 | Sensor current                                |                   |       | peak = 2. rms = 0.07                          |      |         |           |          |        |     |     |      |      |      |
|                                      | Metering cycle                                | per               |       |                                               |      | · ·     | 2         | 2        |        |     |     |      |      |      |
|                                      | Maximum<br>temperature<br>difference          | Δ* <sub>max</sub> |       | ± 110                                         |      |         |           |          |        |     |     |      |      |      |
|                                      | Minimum<br>temperature<br>difference          | Δ* <sub>min</sub> |       | ± 3                                           |      |         |           |          |        |     |     |      |      |      |
|                                      | Start-up range<br>Differential<br>temperature | Δ*                |       | ± 0.5                                         |      |         |           |          |        |     |     |      |      |      |
|                                      | Absolute<br>temperature<br>measuring range    | *                 | 1 160 |                                               |      |         |           |          |        |     |     |      |      |      |
|                                      | Max. energy                                   | Ps                | 0.2   | 0.33                                          | 0.47 | 0.80    | 1.33      | 2.0      | 3.3    | 5.3 | 8.0 | 10.7 | 16.0 | MW   |
| Energy<br>range                      | Max. energy<br>at qp                          | Pi                | 0.19  | 0.32                                          | 0.45 | 0.77    | 1.28      | 1.9      | 30.2   | 5.1 | 7.7 | 10.2 | 15.4 | MW   |
| 0                                    | Min. energy<br>at qi                          | Pi                | 1.5   | 2.5                                           | 3.5  | 6       | 10        | 15       | 25     | 40  | 60  | 80   | 120  | kW   |
| Power Operating Un<br>supply voltage |                                               |                   |       | 230 (24) + 10% - 15 %, 50 Hz                  |      |         |           |          |        |     |     |      |      |      |
|                                      | Energy<br>consumption                         |                   |       |                                               |      |         |           |          |        |     |     |      |      |      |
|                                      | Dimensions                                    | HxWxD             |       |                                               |      |         | 195 X 15  | 50 x 65  |        |     |     |      |      | mm   |
| Divers                               | Weight                                        |                   |       |                                               |      |         | 0.        | 9        |        |     |     |      |      | Kg   |
|                                      | Protection class                              |                   |       |                                               |      |         | IP        | 54       |        |     |     |      |      |      |

| Flow metering unit         |                        | 1.5  | 2.5    | 3.5                                | 6               | 10       | 15    | 25                  | 40      | 60    | 80   | 120  | Unit |       |
|----------------------------|------------------------|------|--------|------------------------------------|-----------------|----------|-------|---------------------|---------|-------|------|------|------|-------|
| Flow                       | Maximum                | qs   | 2.25   | 3.75                               | 5.25            | 9        | 15    | 22.5                | 37.5    | 60    | 90   | 120  | 180  | m³/h  |
| ranges                     | Nom. flow              | qp   | 1.5    | 2.5                                | 3.5             | 6        | 10    | 15                  | 25      | 40    | 60   | 80   | 120  | m³/h  |
|                            | Minimum                | qi   | 0.015  | 0.025                              | 0.036           | 0.06     | 0.1   | 0.15                | 0.25    | 0.4   | 0.6  | 0.8  | 1.2  | m³/h  |
|                            | Start-up               |      | 0.0015 | 0.0025                             | 0.0036          | 0.006    | 0.010 | 0.015               | 0.025   | 0.04  | 0.06 | 0.08 | 0.12 | m³/h  |
| Pressure drop              |                        | Δр   | 0.16   | 0.09                               | 0.16            | 0.10     | 0.10  | 0.10                | 0.25    | 0.11  | 0.25 | 0.11 | 0.25 | Bar   |
| Oper. pressure             | max.                   | PN   | 16     |                                    | 16 / 25         | 25       |       |                     |         |       |      |      |      |       |
| Pipe/flange<br>connections |                        | DN   | 3/4"   |                                    | 1" / 25 40/50/6 |          |       |                     | 50/65/8 | 0/100 |      | mm   |      |       |
| Pipe/flange<br>connections | Total length           |      | 130    |                                    | 130 - 190       | )        |       | 300/270/300/300/360 |         |       |      | 60   | mm   |       |
| Pipe/flange<br>connections | Material               |      | brass  | bra                                | ss/grey c       | ast iron |       | grey cast iron      |         |       |      |      |      |       |
| Medium                     | Working range<br>in °C |      | 20-90  |                                    |                 |          | 20 -  | 130                 |         |       |      |      |      | C°    |
| Conductivity               |                        | min. |        |                                    |                 |          | 20    | C                   |         |       |      |      |      | μS/cm |
| Installation               | Position               |      |        | as required                        |                 |          |       |                     |         |       |      |      |      |       |
| Weight                     | (incl. 3 m cable)      |      | 1.3    | 1.8 / 4.2 13.8/13.8/14.4/16.5/19.2 |                 |          |       |                     | 9.2     | kg    |      |      |      |       |
| Cable length               |                        |      |        |                                    |                 |          | 3 m   | and 10 I            | n       |       |      |      |      |       |
| Protection class           |                        |      |        | IP 54                              |                 |          |       |                     |         |       |      |      |      |       |

### combimeter<sup>®</sup> //

### **Technical specifications**

| En                    | ergy meter                                |        |                                                            | Unit     |
|-----------------------|-------------------------------------------|--------|------------------------------------------------------------|----------|
| Basic                 | Ambient class                             |        | Class C (+5°C to +55°C, installation in industrial plants) |          |
| features              | Protection class                          |        | IP 54                                                      |          |
|                       |                                           |        | Output - Flow rate - Temperature                           |          |
|                       | Unit                                      |        | kWh - MWh - GJ - Gcal - MBTU                               |          |
| Readings              | Total volume                              |        | 9 999 999 - 999 999.9 - 99 999.99 - 9 999.999              | m³       |
| in                    | Current volume                            |        | Output - Flow rate - Temperature                           |          |
| display               | Temperature sensor                        | Туре   | Pt100 / 4-wire or 2-wire                                   |          |
|                       | Sensor current                            |        | Peak = 2. ms = 0.07                                        |          |
|                       | Metering cycle                            | Period | 2                                                          | S        |
|                       | Maximum temp.<br>difference               | ∆*max  | ± 110                                                      | К        |
| Temperature<br>input  | Minimum temp.<br>difference               | ∆*min  | ± 3                                                        | К        |
|                       | Start-up range<br>differential temp.      | Δ*     | ± 0.5                                                      | К        |
|                       | Absolute temp.<br>metering range          | *      | 1 160                                                      | °C       |
| Volume<br>pulse input | Pulse values<br>Frequency                 | max.   | 0.1 - 1 - 2.5 - 10 - 25 - 100 - 250 - 1000<br>50           | l<br>Hz  |
|                       | Pulse duration<br>Input voltage<br>(open) |        | 10 - 150<br>4.5 5.5                                        | ms<br>V  |
| (Contact or<br>open   | Input voltage<br>(closed)                 | max.   | 1.4                                                        | V        |
| collector)            | Input impedance                           | min.   | 820                                                        | k        |
| Power supply          | Operating voltage<br>Energy consumption   | Un     | 230(24) + 10% - 15%, 50 Hz<br>3                            | Vac<br>W |
| Miscellaneous         | Dimensions                                | HxBxT  | 195 x 150 x 65                                             | mm       |
|                       | Weight                                    |        | 0.9                                                        | kg       |

Viterra Energy Services Ltd High Mill Mill St. Cullingworth Bradford BD13 5HA

Phone01535 270200Fax01535 270282e-mail:sales@viterra.co.ukWeb site:www.viterra.co.uk

## combimeter <sup>®</sup> //

# Technical specifications

| En                    | ergy meter                                |        |                                                            | Unit     |
|-----------------------|-------------------------------------------|--------|------------------------------------------------------------|----------|
| Basic                 | Ambient class                             |        | Class C (+5°C to +55°C, installation in industrial plants) |          |
| features              | Protection class                          |        | IP 54                                                      |          |
|                       |                                           |        | Output - Flow rate - Temperature                           |          |
|                       | Unit                                      |        | kWh - MWh - GJ - Gcal - MBTU                               |          |
| Readings              | Total volume                              |        | 9 999 999 - 999 999.9 - 99 999.99 - 9 999.999              | m³       |
| in                    | Current volume                            |        | Output - Flow rate - Temperature                           |          |
| display               | Temperature sensor                        | Туре   | Pt100 / 4-wire or 2-wire                                   |          |
|                       | Sensor current                            |        | Peak = 2. ms = 0.07                                        |          |
|                       | Metering cycle                            | Period | 2                                                          | S        |
|                       | Maximum temp.<br>difference               | Δ*max  | ± 110                                                      | К        |
| Temperature<br>input  | Minimum temp.<br>difference               | ∆*min  | ± 3                                                        | К        |
|                       | Start-up range<br>differential temp.      | Δ*     | ± 0.5                                                      | К        |
|                       | Absolute temp.<br>metering range          | *      | 1 160                                                      | °C       |
| Volume<br>pulse input | Pulse values<br>Frequency                 | max.   | 0.1 - 1 - 2.5 - 10 - 25 - 100 - 250 - 1000<br>50           | l<br>Hz  |
|                       | Pulse duration<br>Input voltage<br>(open) |        | 10 - 150<br>4.5 5.5                                        | ms<br>V  |
| (Contact or<br>open   | Input voltage<br>(closed)                 | max.   | 1.4                                                        | V        |
| collector)            | Input impedance                           | min.   | 820                                                        | k        |
| Power supply          | Operating voltage<br>Energy consumption   | Un     | 230(24) + 10% - 15%, 50 Hz<br>3                            | Vac<br>W |
| Miscellaneous         | Dimensions                                | HxBxT  | 195 x 150 x 65                                             | mm       |
|                       | Weight                                    |        | 0.9                                                        | kg       |

Viterra Energy Services AG Grugaplatz 4 45131 Essen - Germany

| Phone:    | + 49 201/459-3500     |
|-----------|-----------------------|
| Fax:      | + 49 201/459-3508     |
| E-Mail:   | export@viterra-es.com |
| Web Site: | www.viterra-es.com    |